If it's not what You are looking for type in the equation solver your own equation and let us solve it.
s^2+14s+24=0
a = 1; b = 14; c = +24;
Δ = b2-4ac
Δ = 142-4·1·24
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-10}{2*1}=\frac{-24}{2} =-12 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+10}{2*1}=\frac{-4}{2} =-2 $
| x-6.8=-2.8 | | 3(x-5)=3x-15. | | 4/2=g/6 | | )−7x−3x+2=−8x−8 | | 0.5(x+6)=0.5x+3 | | u/6+11.1=(-8.1) | | 8x-12+(-2x)=1x | | X+1+3x=39 | | 4x—15=25 | | 2(y-1)+6y=-19 | | 3x^2-30x–72=0 | | 8=2+2a | | 8x-12+(-2x)=2(2x+5) | | 11x-110=50 | | x2-x-2=x-2 | | 3v-4=(-13) | | 7y-4(y+6)=10 | | 15+.1=55x | | 15+.1x=55x | | (7x+5)=(6x+20) | | -x^2-x+110=0 | | m=24✕3 | | –10(10+s)=–50 | | 3a^2=7-20a | | 2x-1=3/4=9 | | (x+6)2=0x=-6 | | 4n-2n-n-n+n=9 | | w–6=5 | | -5x+(-3)=-12 | | 16w2-2=7 | | u+13=9 | | 5.6x+3.8x=9.4 |